

CSIR NET/JRF

Mathematical Science 16 Feb. 2022

PART-B

(Mathematical Sciences)

- (21.) Consider the two statements given below:
 - I. There exists a matrix $N \in \mathbb{M}_4(\mathbb{R})$ such that $\{(1,1,1,-1),(1,-1,1,1)\}$ is a basis of Row(N) and $(1,2,1,4) \in Null(N)$.
 - II. There exists a matrix $M \in \mathbb{M}_4(\mathbb{R})$ such that $\{(1,1,1,0)^T, (1,0,1,1)^T\}$ is a basis of Col(M) and $(1,1,1,1)^T, (1,0,1,0)^T \in Null(M)$.

Which of the following statements is true?

- (a.) Statement I is TRUE and Statement II is FALSE
- (b.) Both Statement I and Statement II are FALSE
- (c.) Both Statement I and Statement II are TRUE
- (d.) Statement I is TRUE and Statement II is FALSE

(22.)
$$\lim_{n\to\infty}\frac{1}{n}\left(1+\sqrt{2}+\sqrt[3]{3}+...+\sqrt[n]{n}\right)$$

- (a.) Is equal to 0
- (b.) Is equal to 1
- (c.) Is equal to 2

GADEMY

(d.) Does not exist

(23.) Let
$$M = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 2 & -1 \\ 1 & 1 & 3 \end{bmatrix}$$
. Given that 1 is an eigenvalue of M , which of the following statements is

true?

- (a.) -2 is an eigenvalue of M
- (b.) 3 is an eigenvalue of M
- (c.) The eigen space of each eigen value has dimension 1
- (d.) M is diagonalizable
- (24.) Let $S = \{1, 2, ..., 100\}$ and let $A = \{1, 2, ..., 10\}$ and $B = \{41, 42, ..., 50\}$. What is the total number of subsets of S, which have non-empty intersection with both A and B?

(a.)
$$\frac{2^{100}}{2^{20}}$$

- (b.) $\frac{100!}{10!10!}$
- (c.) $2^{80} (2^{10} 1)^2$
- (d.) $2^{100} 2(2^{10})$
- (25.) Let A be a 4×4 matrix such that -1,1,1,-2 are its eigenvalues. If $B = A^4 5A^2 + 5I$, then trace(A+B) equals
 - (a.) 0
 - (b.) -12
 - (c.) 3
 - (d.) 9
- (26.) Let n > 1 be a fixed natural number. Which of the following is an inner product on the vector space of $n \times n$ real symmetric matrices?
 - (a.) $\langle A, B \rangle = (\operatorname{trace}(A))(\operatorname{trace}(B))$
 - (b.) $\langle A, B \rangle = \operatorname{trace}(AB)$
 - (c.) $\langle A, B \rangle = \text{determinant}(AB)$
 - (d.) $\langle A, B \rangle = \operatorname{trace}(A) + \operatorname{trace}(B)$
- (27.) Consider the sequence $\{a_n\}_{n>1}$, where $a_n = 3 + 5\left(-\frac{1}{2}\right)^n + (-1)^n\left(\frac{1}{4} + (-1)^n\frac{2}{n}\right)$. Then the interval $\left(\liminf_{n\to\infty} a_n, \limsup_{n\to\infty} a_n\right)$ is given by
 - (a.) (-2,8)
 - (b.) $\left(\frac{11}{4}, \frac{13}{4}\right)$
 - (c.) (3,5)
 - (d.) $\left(\frac{1}{4}, \frac{7}{4}\right)$
- (28.) Let $f,g:\mathbb{R} \mapsto \mathbb{R}$ be given by and $f(x) = x^2$ and $g(x) = \sin x$. Which of the following functions is uniformly continuous on \mathbb{R} ?

sacaden

- (a.) h(x) = g(f(x))
- (b.) h(x) = g(x) f(x)
- (c.) h(x) = f(g(x))
- (d.) h(x) = f(x) + g(x)
- (29.) Let $S_1 = \frac{1}{3} \frac{1}{2} \times \frac{1}{3^2} + \frac{1}{3} \times \frac{1}{3^3} \frac{1}{4} \times \frac{1}{3^4} + \dots$

and
$$S_2 = \frac{1}{4} + \frac{1}{2} \times \frac{1}{4^2} + \frac{1}{3} \times \frac{1}{4^3} + \frac{1}{4} \times \frac{1}{4^4} + \dots$$

Which of the following identities is true?

- (a.) $3S_1 = 4S_2$
- (b.) $4S_1 = 3S_2$
- (c.) $S_1 + S_2 = 0$
- (d.) $S_1 = S_2$
- (30.) Which of the following sets are countable?
 - (a.) The set of all polynomials with rational coefficients.
 - (b.) The set of all polynomials with real coefficients having rational roots.
 - (c.) The set of all 2×2 real matrices with rational eigenvalues
 - (d.) The set of all real matrices whose row echelon form has rational entries
- (31.) Let A and B be $n \times n$ matrices. Suppose the sum of the elements in any row of A is 2 and the sum of the elements in any column of B is 2. Which of the following matrices is necessarily singular?
 - (a.) $I \frac{1}{2}BA^{T}$
 - (b.) $I \frac{1}{2}AB$
 - (c.) $I \frac{1}{4}AB$
 - (d.) $I \frac{1}{4}BA^T$
- (32.) Let $V = \{A \in M_{3\times 3}(\mathbb{R}) : A^t + A \in \mathbb{R} \cdot I\}$, where I is the identity matrix. Consider the quadratic form defined as $q(A) = \text{Trace}(A)^2 \text{Trace}(A^2)$. What is the signature of this quadratic form?
 - (a.) (++++)
 - (b.) (+000)
 - (c.) (+--)
 - (d.) (--0)
- (33.) Let γ be the positively oriented circle $\{z \in \mathbb{C} : |z| = 3/2\}$. Suppose that $\int_{\gamma} \frac{e^{i\pi z}}{(z-1)(z-2i)^2} dz = 2\pi i C$. Then |C| equals
 - (a.) 2
 - (b.) 5
 - (c.) 1/2
 - (d.) 1/5

(34.) Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{O}(\mathbb{D})$ be the space of all holomorphic functions on \mathbb{D} . Consider the sets $A = \{f \in \mathcal{O}(\mathbb{D}) : f\left(\frac{1}{n}\right) = \{e^{-n} \text{ if } n \text{ is even } 0 \text{ if } n \text{ is odd } 0 \}$.

$$B = \left\{ f \in \mathcal{O}(\mathbb{D}) : f\left(\frac{1}{n}\right) = (n-2) / (n-1), n \ge 2 \right\}.$$

Which of the following statement is true?

- (a.) Both A and B are non-empty
- (b.) A is empty and B has exactly one element
- (c.) A has exactly one element and B is empty
- (d.) Both A, B are empty
- (35.) How many generators does a cyclic group of order 36 have?
 - (a.) 6
 - (b.) 12
 - (c.) 18
 - (d.) 24
- (36.) Which of following statements is necessarily true for a commutative ring R with unity?
 - (a.) R may have no maximal ideals
 - (b.) R can have exactly two maximal ideals
 - (c.) R can have one or more maximal ideals but no prime ideals
 - (d.) R has at least two prime ideals
- (37.) Let f(z) be a non-constant entire function and z = x + iy. Let u(x,y), v(x,y) denote its real and imaginary parts respectively. Which of the following statements is FALSE?

dipsacade

- (a.) $u_x = v_y$ and $u_y = -v_x$
- (b.) $u_y = v_x$ and $u_x = -v_y$
- (c.) $|f'(x+iy)|^2 = u_x(x,y)^2 + v_x(x,y)^2$
- (d.) $|f'(x+iy)|^2 = u_u(x,y)^2 + v_u(x,y)^2$
- (38.) Let $S = \{n : 1 \le n \le 999 ; 3 \mid n \text{ or } 37 \mid n\}$. How many integers are there in the set $S^c = \{n : 1 \le n \le 999 ; n \notin S\}$?
 - (a.) 639
 - (b.) 648
 - (c.) 666
 - (d.) 990

- (39.) Let f be a rational function of a complex variable z given by $f(z) = \frac{z^3 + 2z 4}{z}$. The radius of convergence of the Taylor series of f at z = 1 is
 - (a.) 0
 - (b.) 1
 - (c.) 2
 - (d.) ∞
- **(40.)** Let (X,d) be a metric space and let $f:X\to X$ be a function such that $d(f(x),f(y))\leq d(x,y)$ for every $x,y\in X$. Which of the following statements is necessarily true?
 - (a.) f is continuous
 - (b.) f is injective
 - (c.) f is surjective
 - (d.) f is injective if and only if f is surjective
- (41.) If y(x) is a solution of the equation 4xy'' + 2y' + y = 0 satisfying y(0) = 1. Then y''(0) is equal to
 - (a.) 1/24
 - (b.) 1/12
 - (c.) 1/6
 - (d.) 1/2
- (42.) A body moves freely in a uniform gravitational field. Which of the following statements is true?
 - (a.) Stable equilibrium of the body is possible
 - (b.) Stable equilibrium of the body is not possible
 - (c.) Stable equilibrium of the body depends on the strength of the field
 - (d.) Equilibrium is metastable
- (43.) Which of the following is an extremal of the functional $J(y) = \int_{-1}^{1} (y'^2 2xy) dx$ that satisfies the boundary conditions y(-1) = -1 and y(1) = 1?
 - (a.) $-\frac{x^3}{5} + \frac{6x}{5}$
 - (b.) $-\frac{x^5}{8} + \frac{9x}{8}$
 - (c.) $-\frac{x^3}{6} + \frac{7x}{6}$
 - (d.) $-\frac{x^3}{7} + \frac{8x}{7}$

- **(44.)** Let $a,b,c \in \mathbb{R}$ be such that the quadrature rule $\int_{-1}^{1} f(x) dx = af(-1) + bf'(0) + cf'(1)$ is exact for all polynomials of degree less than or equal to 2. Then a+b+c equal to
 - (a.) 4
 - (b.) 3
 - (c.) 2
 - (d.) 1
- (45.) Consider the following two initial value ODEs

(A)
$$\frac{dx}{dt} = x^3, x(0) = 1;$$

(B)
$$\frac{dx}{dt} = x \sin x^2, \ x(0) = 2$$

Related to these ODEs, we make the following assertions.

- (I) The solution to (A) blows up in finite time.
- (II) The solution to (B) blows up in finite time.

Which of the following statements is true?

- (a.) Both I and II are true
- (b.) I is true but II is false
- (c.) Both I and II are false
- (d.) I is false but II is true
- **(46.)** Which of the following partial differential equations is NOT PARABOLIC for all $x, y \in \mathbb{R}$?

(a.)
$$x^2 \frac{\partial^2 u}{\partial x \partial y} - 2xy \frac{\partial u}{\partial y} + y^2 = 0$$

(b.)
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$

(c.)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$

(d.)
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$

- **(47.)** Let u(x,y) solve the Cauchy problem $\frac{\partial u}{\partial y} x \frac{\partial u}{\partial x} + u 1 = 0$ where $-\infty < x < \infty$, $y \ge 0$ and $u(x,0) = \sin x$. Then u(0,1) is equal to
 - (a.) $1 \frac{1}{e}$
 - (b.) $1 + \frac{1}{e}$
 - (c.) $1 \frac{1 \sin e}{e}$

(d.)
$$1 + \frac{1 - \sin e}{e}$$

(48.) Let the solution to the initial value problem

$$y' = y - t^2 + 1, 0 \le t \le 2, \ y(0) = 0.5$$

be computed using the Euler's method with step-length h=0.4. If y(0.8) and w(0.8) denote the exact and approximate solutions at t=0.8, then an error bound for Euler's method is given by

- (a.) $0.2(0.5e^2-2)(e^{0.4}-1)$
- (b.) $0.1(e^{0.4}-1)$
- (c.) $0.2(0.5e^2-2)(e^{0.8}-1)$
- (d.) $0.1(e^{0.8}-1)$
- (49.) Suppose Poisson $X \mid \lambda \sim \text{Poisson}(\lambda)$ where $\lambda > 0$. Consider the exponential distribution with mean 1/4 for the prior on λ . If the observed value of X is 0, then which among the following is the 95% Bayesian credible (confidence) interval for λ of smallest length?
 - (a.) (0,c) where c = 0.95 b
 - (b.) (0,c) where $c = \frac{\log(20)}{5}$
 - (c.) $(c, \exp(c))$ where $c = \frac{\log(20)}{5}$
 - (d.) (0.2-c,0.2+c) where $c = \frac{\log(20)}{5}$
- (50.) A proportion *p* of a large population has particular disease. A random sample of *k* people is drawn from the population and their blood samples are combined. An accurate test for the disease applied to the combined blood sample shows a positive result, hence at least one of the *k* people has the disease. What is the probability that exactly one of the *k* people has the disease?
 - (a.) $\frac{kp(1-p)^{k-1}}{1-(1-p)^k}$
 - (b.) $\frac{(1-p)^k + kp(1-p)^{k-1}}{1 (1-p)^k}$
 - $(c.) \quad \frac{p}{p+p^2+\ldots+p^k}$
 - (d.) $\frac{1}{k}$
- (51.) Let $S = \{1, 2, 3, 4, 5\}$. Consider a Markov chain on the state space S with transition probability matrix.

$$\begin{pmatrix} 0 & 0.3 & 0.7 & 0 & 0 \\ 0 & 0 & 0.3 & 0.7 & 0 \\ 0 & 0 & 0 & 0.3 & 0.7 \\ 0.7 & 0 & 0 & 0 & 0.3 \\ 0.3 & 0.7 & 0 & 0 & 0 \end{pmatrix}$$

Then which of the following is always true?

- (a.) State 1 has period 2
- (b.) State 2 is recurrent
- (c.) State 3 is transient
- (d.) The chain admits at least two stationary distributions
- (52.) Consider a BIBD (Balanced Incomplete Block Design) with v treatments in b blocks, each of which has k plots. Let r denote the number of blocks in which each treatment occurs. Let λ be the number of blocks in which each pair of treatment occurs. Which of the following statements is necessarily true?
 - (a.) vb = rk
 - (b.) vr = bk
 - (c.) $r(b-1) = \lambda(k-1)$
 - (d.) $r(v-1) = \lambda(b-1)$
- (53.) Let $X_1, X_2, ..., X_{16}$ be a random sample from normal distribution with unknown mean μ and variance 4. Suppose $Z \sim N(0,1)$. For the most powerful test for testing $H_0: \mu = 3$ vs $H_1: \mu = 0$, which one of the following is the p-value where the observed sample mean is 2.5
 - (a.) p(Z > 1)
 - (b.) p(Z > -1)
 - (c.) p(Z > 0.5)
 - (d.) p(Z > -0.5)
- (54.) Let $X_1, X_2,...$ be i.i.d. random variables with uniform distribution on the interval [0,1]. Let $Y_{n,k}$ denote the k^{th} order statistic based on the sample $X_1,...,X_n$ (e.g. $Y_{n,1}=\min\{X_1,...,X_n\}$). What is the probability that $Y_{21,7}=Y_{22,7}$?
 - (a.) $\frac{1}{3}$
 - (b.) $\frac{2}{3}$
 - (c.) $\frac{7}{11}$
 - (d.) $\frac{15}{22}$

- (55.) Let X_1, X_2, X_3, X_4 be i.i.d. random variables having uniform distribution on $(0, \theta)$ where $\theta > 0$ is an unknown parameter. Define $X_{(4)} = \max\{X_1, X_2, X_3, X_4\}$. Consider the confidence intervals $I = \left[2X_{(4)}, 3X_{(4)}\right]$ and $J = \left[X_{(4)}, 1 + X_{(4)}\right]$ for θ . Which of the following is true?
 - (a.) The converge probabilities of I and J are both independent of θ
 - (b.) The converge probability of I is independent of θ but the converge probability of J is NOT independent of θ .
 - (c.) The converge probability of J is independent of θ but the converge probability of I is NOT independent of θ .
 - (d.) The converge probabilities of both I and J are NOT independent of θ .
- (56.) Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with mean θ . Which of the following is NOT a sufficient statistic for θ ?
 - (a.) $\frac{1}{X_1 + X_2 + \dots + X_n}$
 - (b.) $X_1 + X_2 + ... + X_n$
 - (c.) $\frac{X_n}{X_1 + X_2 + ... + X_{n-1}}$
 - (d.) $(X_n, X_1 + X_2 + ... + X_{n-1})$
- (57.) Consider a M/M/1 queueing system with traffic intensity p < 1. The probability of having n customers in the system at the steady state is given by
 - (a.) ρ^n
 - (b.) $\rho(1-\rho^n)$
 - (c.) $\rho^{n-1}(1-\rho)$
 - (d.) $\rho^n \left(1-\rho\right)$
- Suppose $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ are bivariate measurements where n > 2. Assume that all the x_i are distinct and all the y_i are distinct too. Let r_p denote the ordinary (Pearson) correlation coefficient and r_s denote the (Spearman) rank correlation coefficient. Suppose $r_p = 1$. Which of the following is true?

ENERATING

- (a.) $0.5 < r_s < 1$
- (b.) $r_s = 0.5$
- (c.) $r_{s} = 1$
- (d.) $r_s = -1$
- (59.) A newly developed algorithm for random number generation need to be tested. The first step is to check whether the sequence of numbers generated can be considered a random sample from the uniform distribution on the interval (0,1). Which of the following is an appropriate non-parametric test?
 - (a.) Wilcoxon signed rank test

- (b.) Sign test
- (c.) Paired t test
- (d.) Kolmogorov-Smirnov test
- (60.)Suppose that Y has Exponential distribution with mean θ and that the conditional distribution of X given Y = y is Normal with mean 0 and variance y, for all y > 0. Identity the characteristic function of X (defined as $\phi(t) = \mathbb{E}[e^{itX}]$) from the following.
 - (a.) $e^{-\frac{\theta}{2}t^2}$
 - (b.) $e^{-\frac{1}{2\theta}t^2}$
 - (c.) $\frac{1}{1+\frac{1}{2}\theta t^2}$
 - (d.) $\frac{\theta}{\theta + \frac{1}{2}\theta t^2}$

PART-C (Mathematical Sciences)

Which of the following are inner products on \mathbb{R}^2 ? (61.)

(a.)
$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + x_2 y_2$$

(b.)
$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2$$

(c.) $\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2$

(c.)
$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2$$

(d.)
$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 - \frac{1}{2} x_1 y_2 - \frac{1}{2} x_2 y_1 + x_2 y_2$$

- Let $A \subseteq \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Which of the following statements are true? (62.)
 - (a.) If A is closed then f(A) is closed
 - (b.) If *A* is bounded then $f^{-1}(A)$ is bounded
 - (c.) If A is closed and bounded then f(A) is closed and bounded
 - (d.) if A is bounded then f(A) is bounded

- **(63.)** Let $T: X \to Y$ be a bounded linear operator from a Banach space X to another Banach space Y. Which of the following conditions imply that T has a bounded inverse?
 - (a.) $\inf_{\|x\|=1} \|Tx\| = 0$
 - (b.) $\inf_{\|x\|=1} \|Tx\| = 0$ and T(X) is dense in Y
 - (c.) $\inf_{\|x\|=1} \|Tx\| > 0$
 - (d.) $\inf_{\|x\|=1} \|Tx\| > 0$ and T(X) is dense in Y
- **(64.)** Let A be an $m \times n$ matrix such that the first r rows of A are linearly independent and the first scolumns of A are linearly independent, where r < m and s < n. Which of the following statements are true?
 - (a.) The rank of A is at least $\max\{r, s\}$
 - (b.) The submatrix formed by the first r rows and the first s columns of A has rank min $\{r, s\}$
 - (c.) If r < s, then there exists a row among rows r + 1, ..., m which together with the first r rows form a linearly independent set.
 - (d.) If s < r, then there exists a column among columns s+1,...,n which together with the firsts Scolumns form a linearly dependent set
- **(65.)** Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that $\int_0^t f(x) dx = \int_t^1 f(x) dx$, for every $t \in [0,1]$. Then which of the following are necessarily true?
 - (a.) f is differentiable on (0,1)
 - (b.) f is monotonic on [0,1]
 - (c.) $\int_0^1 f(x) dx = 1$
 - (d.) f(x) > 0 for all rationals $x \in [0,1]$
- (66.) Consider the system

$$2x + ky = 2 - k$$

$$kx + 2u = k$$

$$ky + kz = k - 1$$

in three unknowns and one real parameter k. For which of the following values of k is the system of linear equation consistent?

psacadem

- (a.) 1
- (b.) 2
- (c.) -1
- (d.) -2
- **(67.)** For non-negative integers $k \ge 1$ define $f_k(x) = \frac{x^k}{(1+x)^2} \ \forall x \ge 0$.

Which of the following statements are true?

(a.) For each k, f_k is a function of bounded variation on compact intervals

- (b.) For every k, $\int_0^\infty f_k(x) dx < \infty$
- (c.) $\lim_{k \to \infty} \int_0^1 f_k(x) dx$ exists
- (d.) The sequence of functions f_k converge uniformly on [0,1] as $k \to \infty$
- **(68.)** Let \mathbb{R}^+ denote set of all positive real numbers. Suppose that $f: \mathbb{R}^+ \to \mathbb{R}$ is a differentiable function. Consider the function $g(x) = e^x f(x)$. Which of the following are true?
 - (a.) If $\lim_{x\to\infty} f(x) = 0$ then $\lim_{x\to\infty} f'(x) = 0$

(b.) If
$$\lim_{x \to \infty} (f(x) + f'(x)) = 0$$
 then $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{g(x) - g(y)}{e^x - e^y} = 0$

- (c.) If $\lim_{x\to\infty} f'(x) = 0$ then $\lim_{x\to\infty} f(x) = 0$
- (d.) If $\lim_{x\to\infty} (f(x) + f'(x)) = 0$ then $\lim_{x\to\infty} f(x) = 0$
- (69.) Let A be an $m \times m$ matrix with real entries and let x be an $m \times 1$ vector of unknowns. Now consider the two statements given below:
 - I: There exists non-zero vector $b_1 \in \mathbb{R}^m$ such that the linear system $Ax = b_1$ has NO solution.
 - II: There exist non-zero vectors b_2 , $b_3 \in \mathbb{R}^m$, with $b_2 \neq cb_3$ for any $c \in \mathbb{R}$, such that the linear systems $Ax = b_2$ and $Ax = b_3$ have solutions.

Which of the following statements are true?

- (a.) II is TRUE whenever A is singular
- (b.) I is TRUE whenever A is singular
- (c.) Both I and II can be TRUE simultaneously
- (d.) If m = 2, then at least one of I and II is FALSE
- (70.) Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a C^1 function with f(0,0,0) = (0,0). Let A denote the derivative of f at (0,0,0). Let $g: \mathbb{R}^3 \to \mathbb{R}$ be the function given by g(x,y,z) = xy + yz + zx + x + y + z. Let $h: \mathbb{R}^3 \to \mathbb{R}^3$ be the function define by h = (f,g). In which of the following cases, will the function

h admit a differentiable inverse in some open neighbourhood of (0,0,0)?

(a.)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(b.)
$$A = \begin{pmatrix} 2 & 2 & 2 \\ 6 & 5 & 2 \end{pmatrix}$$

(c.)
$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

(d.)
$$A = \begin{pmatrix} 4 & 2 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$

(71.) Let X be a topological space and E be a subset of X. Which of the following statements are correct?

- (a.) E is connected implies \overline{E} is connected
- (b.) E is connected implies ∂E is connected
- (c.) E is path connected implies \overline{E} is path connected
- (d.) E is compact implies \overline{E} is compact
- (72.) It is known that $X = X_0 \in M_2(\mathbb{Z})$ is a solution of AX XA = A for some $A \in \left\{ \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right\}$. Which of following values are NOT possible for the determinant of X_0 ?
 - (a.) $\det(X_0) = 0$
 - (b.) $\det(X_0) = 2$
 - (c.) $\det(X_0) = 6$
 - (d.) $\det(X_0) = 10$
- (73.) Let $M \in \mathbb{M}_n(\mathbb{R})$ such that $M \neq 0$ but $M^2 = 0$. Which of the following statements are true?
 - (a.) If n is even then $\dim(\operatorname{Col}(M)) > \dim(\operatorname{Null}(M))$
 - (b.) If *n* is even then $\dim(\operatorname{Col}(M)) \leq \dim(\operatorname{Null}(M))$
 - (c.) If n is odd then $\dim(\operatorname{Col}(M)) < \dim(\operatorname{Null}(M))$
 - (d.) If n is odd then $\dim(\operatorname{Col}(M)) > \dim(\operatorname{Null}(M))$
- (74.) In which of the following cases does there exist a continuous and onto function $f: X \to Y$?
 - (a.) X = (0,1), Y = (0,1]
 - (b.) X = [0,1], Y = (0,1]
 - (c.) $X = (0,1), Y = \mathbb{R}$
 - (d.) $X = (0,2), Y = \{0,1\}$
- (75.) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a bounded function such that for each $t \in \mathbb{R}$, the function g_t and h_t given by $g_t(y) = f(t,y)$ and $h_t(x) = f(x,t)$ are non decreasing functions. Which of the following statements are necessarily true?
 - (a.) k(x) = f(x,x) is a non-deceasing function
 - (b.) Number of discontinuities of f is at most countably infinite
 - (c.) $\lim_{(x,y)\to(+\infty,+\infty)} f(x,y)$ exists
 - (d.) $\lim_{(x,y)\to(+\infty,-\infty)} f(x,y)$ exists

- (76.) Let Y be a nonempty bounded, open subset of \mathbb{R}^n and let \overline{Y} denote its closure. Let $\{U_j\}_{j\geq 1}$ be a collection of open sets in \mathbb{R}^n such that $\overline{Y} \subseteq U_{j\geq 1}U_j$. Which of the following statements are true?
 - (a.) There exist finitely many positive integers $j_1,...,j_N$ such that $Y \subseteq \bigcup_{k=1}^N U_{jk}$
 - (b.) There exists a positive integer N such that $Y \subseteq \bigcup_{i=1}^{N} U_i$
 - (c.) For every subsequence $j_1, j_2,...$ we have $Y \subseteq \bigcup_{k=1}^{\infty} U_{jk}$
 - (d.) The exists a subsequence $j_1, j_2, ...$ such that $Y = \bigcup_{k=1}^{\infty} U_{jk}$
- (77.) Let (a_n) and (b_n) be two sequences of real numbers and E and F be two subsets of \mathbb{R} . Let $E+F=\{a+b:a\in E,b\in F\}$. Assume that the right hand side is well defined in each of the following statements. Which of the following statements are true?
 - (a.) $\lim_{n\to\infty} \sup(a_n + b_n) \le \lim_{n\to\infty} \sup a_n + \lim_{n\to\infty} \sup b_n$
 - (b.) $\limsup(E+F) \leq \limsup E + \limsup F$
 - (c.) $\liminf (a_n + b_n) \leq \liminf a_n + \liminf b_n$
 - (d.) $\liminf (E + F) = \liminf E + \limsup F$
- (78.) Let A be an $n \times n$ matrix. We say that A is diagonalizable if there exists a nonsingular matrix P such that PAP^{-1} is a diagonal matrix. Which of the following conditions imply that A is diagonalizable?
 - (a.) There exists integer k such that $A^k = I$
 - (b.) There exists integer k such that A^k is nilpotent
 - (c.) A^2 is diagonalizable
 - (d.) A has n linearly independent eigenvectors
- (79.) Let f be an entire function such that $|zf(z)-1+e^z| \le 1+|z|$ for all $z \in \mathbb{C}$. Then
 - (a.) f'(0) = -1
 - (b.) f'(0) = -1/2
 - (c.) f''(0) = -1/3
 - (d.) f''(0) = -1/4
- (80.) Let p be a prime number and N_p be the number of pairs of positive integers (x,y) such that $\frac{1}{x} + \frac{1}{y} = \frac{1}{p^4}.$

Which among the following are possible values of N_p ?

- (a.) 0
- (b.) 4
- (c.) 5
- (d.) 9

- **(81.)** Let \mathbb{T} denote the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ in the complex plane and let \mathbb{D} be the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$. Let R denote the set of points z_0 in \mathbb{T} for which there exists a holomorphic function f in an open neighbourhood U_{z_0} of z_0 such that $f(z) = \sum_{n=0}^{\infty} z^{4n}$ in $U_{z_0} \cap \mathbb{D}$. Then R contains
 - (a.) All points of \mathbb{T}
 - (b.) Infinitely many points of \mathbb{T}
 - (c.) All points of \mathbb{T} except a finite set
 - (d.) No points of \mathbb{T}
- **(82.)** A positive integer n co-prime to 17, is called a primitive root modulo 17 if $n^k 1$ is not divisible by 17 for all k with $1 \le k < 16$. Let a, b be distinct positive integers between 1 and 16. Which of the following statement are true?
 - (a.) 2 is a primitive root modulo 17
 - (b.) If a is a primitive root modulo 17, then a^2 is not necessarily a primitive Root modulo 17
 - (c.) If a, b are primitive roots modulo 17, then ab is primitive root modulo 17.
 - (d.) Product of primitive roots modulo 17 between 1 and 16 is congruent to 1 modulo 17.
- **(83.)** Let $f = a_0 + a_1 X + ... a_n X^n$ be a polynomial with $a_i \in \mathbb{Z}$ for $0 \le i \le n$. Let p be a prime such that $p \mid a_i$ for all $1 < i \le n$ and p^2 does not divide a_n . Which of the following statements are true?
 - (a.) f is always irreducible
 - (b.) f is always reducible
 - (c.) f can sometimes be irreducible and can sometimes be reducible
 - (d.) f can have degree 1
- (84.) Which of the following statements are true about subsets of \mathbb{R}^2 with the usual topology?
 - (a.) A is connected if and only if its closure \overline{A} is connected
 - (b.) Intersection of two connected subsets is connected
 - (c.) Union of two compact subsets is compact
 - (d.) There are exactly two continuous function from \mathbb{Q}^2 to the set $\{(0,0),(1,1)\}$.
- (85.) Consider the function $f(z) = \frac{(\sin z)^m}{(1 \cos z)^n}$ for 0 < |z| < 1 where m, n are positive integers. Then z = 0 is
 - (a.) A removable singularity if $m \ge 2n$
 - (b.) A pole if m < 2n
 - (c.) A pole if $m \ge 2n$
 - (d.) An essential singularity for some values of m, n

- **(86.)** Consider $A = \{1, 1/2, 1/3, ..., 1/n, ... | n \in \mathbb{N}\}$ and $B = A \cup \{0\}$. Both the sets are endowed with subspace topology from \mathbb{R} . Which of the following statements are true?
 - (a.) A is a closed subset of \mathbb{R}
 - (b.) B is a closed subset of \mathbb{R}
 - (c.) A is homeomorphic to $\mathbb Z$, where $\mathbb Z$ has subspace topology from $\mathbb R$
 - (d.) B is homeomorphic to \mathbb{Z} , where \mathbb{Z} has subspace topology from \mathbb{R}
- (87.) Let G be a group of order 24. Which of the following statements are necessarily true?
 - (a.) G has a normal subgroup of order 3
 - (b.) G is not a simple group
 - (c.) There exists an injective group homomorphism from G to S_8
 - (d.) G has a subgroup of index 4
- **(88.)** For any complex valued function f let D_f denote the set on which the function f satisfies Cauchy-Riemann equations. Identity the function for which D_f is equal to $\mathbb C$.
 - (a.) $f(z) = \frac{z}{1+|z|}$
 - (b.) $f(z) = (\cos \alpha x \sin \alpha y) + i(\sin \alpha x + \cos \alpha y)$, where z = x + iy
 - (c.) $f(z) = \begin{cases} e^{-\frac{1}{z^4}} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$
 - (d.) $f(z) = x^2 + iy^2$ where z = x + iy
- (89.) Which of the following statements are true?
 - (a.) All finite field extension of Q are Galois
 - (b.) There exists a Galois extension of Q of degree 3.
 - (c.) All finite field extension of \mathbb{F}_2 are Galois
 - (d.) There exists a field extension of $\mathbb Q$ of degree 2 which is not Galois
- **(90.)** For a positive integer n, let $\Omega(n)$ denote the number of prime factors of n, counted with multiplicity. For instance, $\Omega(3) = 1$, $\Omega(6) = \Omega(9) = 2$. Let p > 3 be a prime number and let N = p(p+2)(p+4). Which of the following statements are true?
 - (a.) $\Omega(N) \ge 3$
 - (b.) There exist primes p > 3 such that $\Omega(N) = 3$
 - (c.) p can never be the smallest prime divisor of N
 - (d.) p can be the smallest prime divisor of N
- **(91.)** Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a nonzero smooth vector field satisfying $\operatorname{div} f \neq 0$. Which of the following are necessarily true for the ODE $\dot{x} = f(x)$?
 - (a.) There are no equilibrium points

- (b.) There are no periodic solutions
- (c.) All the solutions are bounded
- (d.) All the solutions are unbounded
- (92.) The values of a, b, c, d, e for which the function

$$f(x) = \begin{cases} a(x-1)^2 + b(x-2)^3 & -\infty < x \le 2\\ c(x-1)^2 + d & 2 \le x \le 3\\ (x-1)^2 + e(x-3)^3 & 3 \le x < \infty \end{cases}$$

is a cubic spline are

- (a.) a = c = 1, d = 0, b, e are arbitrary
- (b.) a = b = c = 1, d = 0, e is arbitrary
- (c.) a = b = c = d = 1, e is arbitrary
- (d.) a = b = c = d = e = 1
- (93.) Which of the following expression for u = u(x,t) are solution of $u_t e^{-t}u_x + u = 0$ with u(x,0) = x?
 - (a.) $e^{t}(x+e^{t}-1)$
 - (b.) $e^{-t}(x-e^{-t}+1)$
 - (c.) $x e^t + 1$
 - (d.) xe^t
- (94.) Consider the 2nd order ODE $\ddot{x} + p(t)\dot{x} + q(t)x = 0$ and let x_1, x_2 be two solutions of this ODE is [a,b]. Which of the following statements are true for the Wronskian W of x_1, x_2 ?
 - (a.) W = 0 in (a,b) implies that x_1, x_2 are independent
 - (b.) W can change sign in (a,b)
 - (c.) $W(t_0) = 0$ for some $t_0 \in (a,b)$ implies that W = 0 in (a,b)
 - (d.) $W(t_0) = 1$ for some $t_0 \in (a,b)$ implies that W = 1 in (a,b)
- (95.) A mass m with velocity v approaches a stationary mass M along the x-axis. The masses bounce of each other elastically. Assume that the motion takes place in one dimension along the x-axis and v_f and v_f represent the final velocities of masses m and v_f along the v-axis. Which of the following are true?
 - (a.) $v_f = v, V_f = v$
 - (b.) $v_f = 0, V_f = v$
 - (c.) $v_f = \frac{(m-M)v}{m+M}, V_f = \frac{2mv}{m+M}$
 - (d.) $v_f = \frac{mv}{m+M}, V_f = \frac{Mv}{m+M}$

Let K(x,y) be a kernel in $[0,1] \times [0,1]$, defined as $K(x,y) = \sin(2\pi x)\sin(2\pi y)$. Consider the (96.)integral operator.

$$\mathcal{K}(u)(x) = \int_0^1 u(y)K(x,y)\,dy$$

where $u \in C([0,1])$. Which of the following assertions on \mathcal{K} are true?

- (a.) The null space of K is infinite dimensional
- (b.) $\int_0^1 v(x) \mathcal{K}(u)(x) dx = \int_0^1 \mathcal{K}(v)(x) u(x) dx$ for all $u, v \in C([0,1])$
- (c.) K has no negative eigenvalue
- (d.) K is has an eigenvalues greater then 3/4
- Consider the Euler method for integration of the system of differential equations (97.)

$$\dot{x} = -y$$

$$\dot{x} = x$$

Assume that (x_i^n, y_i^n) are the points obtained for $i = 0, 1, ..., n^2$ using a time-step h = 1/n starting at the initial point $(x_0, y_0) = (1,0)$. Which of the following statements are true?

- (a.) The points (x_i^n, y_i^n) lie on a circle of radius 1
- (b.) $\lim (x_n^n, y_n^n) = (\cos(1), \sin(1))$
- (c.) $\lim (x_2^n, y_2^n) = (1,0)$
- (d.) $(x_i^n)^2 + (y_i^n)^2 > 1$, for $i \ge 1$
- Let B be the unit ball in \mathbb{R}^3 centered at origin. The Euler-Lagrange equation corresponding to (98.)the functional $I(u) = \int_{\mathbb{R}} (1 + |\nabla u|^2)^{1/2} dx$ is
 - (a.) $\operatorname{div}\left(\frac{\nabla u}{(1+|\nabla u|^2)^2}\right)^{1/2} = 0$ (b.) $\frac{\nabla u}{(1+|\nabla u|^2)^{1/2}} = 1$

 - (c.) $|\nabla u| = 1$
 - (d.) $(1+|\nabla u|^2)\Delta u = \sum_{i,i=1}^3 u_{xi} u_{xi} u_{xi} u_{xixi}$
- (99.) Let u be a positive eigenfunction with eigenvalue λ for the boundary value problem $\ddot{u} + 2\dot{u} + a(t)u = \lambda u$, $\dot{u}(0) = 0 = \dot{u}(1)$ where $a:[0,1] \to (1,\infty)$. Which of the following statements are possibly true?
 - (a.) $\lambda > 0$
 - (b.) $\lambda < 0$
 - (c.) $\int_0^1 (\dot{u})^2 dt = 2 \int_0^1 u \dot{u} dt + \int_0^1 (a(t) \lambda) u^2 dt$

- (d.) $\lambda = 0$
- **(100.)** Let $X = \{y \in C^1[0,\pi]: y(0) = 0 = y(\pi)\}$ and define $J: X \to \mathbb{R}$ by $J(y) = \int_0^{\pi} y^2 (1-y^{-2}) dx$. Which of the following statements are true?
 - (a.) y = 0 is a local minimum for J with respect to the C^1 norm on X
 - (b.) y = 0 is a local maximum for J with respect to the C^1 norm on X
 - (c.) y = 0 is a local minimum for J with respect to the sup norm on X
 - (d.) y = 0 is local maximum for J with respect to the sup norm on X
- (101.) Let u(x,y) solve the partial differential equation (PDE) $x^2 \frac{\partial^2 u}{\partial x \partial y} + 3y^2 u = 0$ with $u(x,0) = e^{1/x}$. Which of the following statements are true?
 - (a.) The PDE is not linear
 - (b.) $u(1,1) = e^2$
 - (c.) $u(1,1) = e^{-2}$
 - (d.) The method of separation of variables can be utilized to compute the solution u(x,y)
- (102.) Consider the integral equation $\int_0^x (x-t)u(t) dt = x; \ x \ge 0,$

for continuous function u defined on $[0,\infty)$. The equation has

- (a.) A unique bounded solution
- (b.) No solution
- (c.) A unique solution u such that $|u(x)| \le C(1+|x|)$ for some constant C
- (d.) More than one solution u such that $|u(x)| \le C(1+|x|)$ for some constant C.

REGENERATING LOGICS

- (103.) Let $\{(x_i, y_i): i=1,2,...,n\}$ be given data points, where not all x_i s are the same. C decides to fit a linear regression model of y on x with an intercept and D decides fit a linear regression model of y on x without an intercept. Let \overline{x} and \overline{y} be the sample means of x and y respectively. Which of the following statements regarding the two fitted models are NOT necessarily true?
 - (a.) Both the fitted regression line will pass through the point (\bar{x}, \bar{y})
 - (b.) C's fitted line will pass through (\bar{x}, \bar{y}) , but D's fitted line will not pass through (\bar{x}, \bar{y})
 - (c.) for both the fitted models, the sample correlation coefficient between x_i s and the corresponding residuals is zero
 - (d.) the sample correlation coefficient between x_i s and the corresponding residuals is zero of C's fitted model, but not for D's fitted model.
- (104.) Suppose $X_1,...,X_n$ are i.i.d $N(\theta,1)$ where $\theta \ge 0$. Let $T = T(X_1,...,X_n)$ be the maximum likelihood estimate of θ . Which of the following statements are true?
 - (a.) $E_{\theta}(T) \theta \ge 0$ for all $\theta \ge 0$

- (b.) $E_{\theta}(T) \theta = 0$ for all $\theta \ge 0$
- (c.) $E_{\theta}(T) \theta < 0$ for all $\theta \ge 0$
- (d.) There exists $\theta_0 > 0$ such that $E_0(T) \theta < 0$ for all $0 < \theta < \theta_0$ and $E_{\theta}(T) \theta > 0$ for all $\theta \ge \theta_0$
- (105.) Suppose $X \sim \text{Geometric } (1/2) \text{ (taking value in } \{1,2,3,...\})$ and conditional on X, the variable Y has Poisson (X) distribution. Similarly $U \sim \text{Poisson } (1)$ and conditional on U, the variable V has Geometric (1/(U+1)) distribution. Then,
 - (a.) $E(Y) \ge E(V)$
 - (b.) $E(Y) \leq E(V)$
 - (c.) $Var[Y] \ge Var[V]$
 - (d.) $Var[Y] \leq Var[V]$
- (106.) Consider an irreducible Markov chain with finite state space S. Let $p = (p_{ij})$ be its transition probability matrix and let $p^n = (p_{ij})$ denote p^n -step transition probability matrix for the chain.

Let
$$\alpha_{ij} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} p_{ij}^{(m)}, i, j \in S$$

Recall that the limit above always exists. Which of the following statements are necessarily true?

- (a.) $\alpha_{ii} = \alpha_{ki} \ \forall i, j, k \in S$
- (b.) $\sum_{j} \alpha_{ij} = 1$ for all $i \in S$
- (c.) $\alpha_{ii} > 0$ for all $i, j \in S$
- (d.) For all $i,j \in S$, the sequence $p_{ij}^{(n)}$ converges to α_{ij} as $n \to \infty$
- (107.) Suppose $X_1, X_2, ..., X_n$ are i.i.d. random variables which are uniformly distributed on the interval $(0,\theta)$ where $\theta > 0$. Let $X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$ be the corresponding order statistic. Consider testing the hypothesis $H_0: \theta = 1$ versus $H_1: \theta > 1$. Which of the following tests have significance level α for $0 < \alpha < 0.5$?
 - (a.) Reject H_0 when $X_1 > 1 \alpha$
 - (b.) Reject H_0 when $X_{(n)} > (1 \alpha)^{1/n}$
 - (c.) Reject H_0 when $X_{(n)} < (1-\alpha)^{1/n}$
 - (d.) Reject H_0 when $X_{(1)} > 1 \alpha^{1/n}$
- (108.) Consider a small clinical trial to study the effectiveness of a treatment for a particular illness, 10 patients are enrolled in this experiment. Let θ denote the probability that a randomly chosen partient in the population recovers from this illness due to this treatment. For a standard Bayesian analysis ,consider the Beta (0.5,0.5) prior on θ (with density proportional to $(\theta(1-\theta)^{-1/2})$. Suppose exactly 6 out of the 10 patients recover. Which of the following are Bayes estimates of θ under the squared error loss function?

- (a.) $\frac{13}{22}$
- (b.) $\frac{11}{20}$
- (c.) $\frac{1}{2}$
- (d.) $E(\theta / 6)$ out of 10 patients recovered)
- (109.) If π is permutation of $\{1,2,...,n\}$, let $X_n(\pi)$ denote the number of fixed points, that is cardinality of the set $\{i \leq n : \pi(i) = i\}$. If a permutation π is chosen uniformly at random then X_n is a random variable. Which of the following are correct?
 - (a.) $E(X_{25}) = 5E(X_5)$
 - (b.) $E(X_{25}) = E(X_5) / 5$
 - (c.) $E(X_{25}) = E(X_5)$
 - (d.) $E(X_{25}) = [E(X_5)]^2$
- (110.) Suppose we fit the linear model $Y = X\beta + \epsilon$ using least squares where $Y = (Y_1, Y_2, ..., Y_n)^T$ and $\epsilon = (\epsilon_1, \epsilon_2, ..., \epsilon_n)^T$. Here X is a $n \times p$ non-stochastic matrix with full column rank and ϵ_i s are i.i.d. with mean 0 and variance 1. For $i \in \{1, 2, ..., n\}$, let \hat{Y}_i be the fitted value of Y_i and let $\hat{\epsilon}_i$ be the corresponding residual. For $r, s \in \{1, 2, ..., n\}$, $r \neq s$ which of the following must be true?
 - (a.) The random variable \in , and \hat{Y}_s are uncorrelated
 - (b.) The random variable \in_s and \hat{Y}_s are uncorrelated
 - (c.) The random variable $\hat{\epsilon}_r$ and \hat{Y}_s are uncorrelated
 - (d.) The random variable $\hat{\epsilon}_s$ and \hat{Y}_s are uncorrelated
- (111.) Let $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ be i.i.d from a continuous bivariate distribution. Let R_i be rank of X_i among the X observation and S_i be rank of Y_i among the Y observation. Let Spearmen's statistic for testing independence between X and Y observation be denoted by T. Then, which of the following are true?
 - (a.) $T = \frac{12\sum_{i=1}^{n}R_{i}S_{i}}{n(n^{2}-1)} \frac{3(n+1)}{n-1}$
 - (b.) E(T) = 0 when X and Y are independent
 - (c.) $Var(T) = \frac{1}{n-1}$ when X and Y are independent
 - (d.) $T \ge 0$

Y

- (112.) Let $(X_n, n \ge 1)$ and X be random variables defined on a common probability space, all having finite expectation and having characteristic functions $(\varphi_n, n \ge 1)$ and φ respectively. Which of the following
 - (a.) if $E(X_n) \to E(X)$ then there is at least one sample point w such that $X_n(w) \to X(w)$
 - (b.) if $X_n(w) \to X(w)$ for every sample point wthen $E(X_n) \to E(X)$
 - (c.) if for every sample point wthen $\varphi_n(t) \to \varphi(t)$ for all t
 - (d.) if $\varphi_n(t) \to \varphi(t)$ for all t then $X_n(w) \to X(w)$ for all at least one sample point w
- (113.) Let $X_1, X_2, ..., X_n$ be random variable whose marginal distribution are N(0,1). Suppose $W(X_iX_j) = 0$ for all $i, j, i \neq j$. Let $Y = X_1 + X_2 + ... + X_n$ and $V = X_1^2 + X_2^2 + ... + X_n^2$. Which of the following statements follow form the given condition?
 - (a.) Y has normal distribution with mean zero and variance n
 - (b.) V has chi-square distribution with n degree of freedom
 - (c.) $E(X_i^3 X_i^3) = 0$ for all, $i, j, i \neq j$
 - (d.) $P(|Y| > t) \le \frac{n}{t^2}$ for all t > 0
- (114.) Consider a Markov chain with state space $S = \{0,1,2,...,\}$ and transition probabilities given as follows:

$$p_{0,j} = 1/(j!e)$$
 for $j \ge 0$

 $p_{i,i-1} = 1$ for i > 0 and i odd; $p_{i,i+1} = 1$ for i > 0 and i even. Which of the following are true?

- (a.) The chain is irreducible
- (b.) The chain has period 2
- (c.) There are infinitely many recurrent classes
- (d.) zero is a transient state
- (115.) A population of size N is divided into L strata of sizes $N_1, N_2, ..., N_L$ respectively. A strafified random sample of size n is drawn from the population where $n_1, n_2, ..., n_L$ denote the sample size in each of the L strata. Note that within each stratum units are chosen using simple random sampling.

Suppose the sample mean of the j-th stratum is denoted by \bar{y}_j and let $\bar{y}_{st} = \sum_{j=1}^L \frac{N_j y_j}{N}$ and $\sigma_{st}^2 = V(\bar{y}_{st})$

Consider a simple random sample of size n drawn from the population, independently of the first sample. Let \bar{y} and σ^2 denote the sample mean and the variance of the sample mean for this sample. Which of the following statements are corrects?

- (a.) \bar{y}_{st} is an unbiased estimator of the population mean
- (b.) \overline{y} is an unbiased estimator of the population mean

(c.) $\sigma_{st}^2 \leq \sigma^2$

(d.) if
$$\frac{n_j}{N_i} = \frac{n}{N}$$
 for all, then $\sigma_{st}^2 \le \sigma^2$

- (116.) Let $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ be n independent observation from the uniform distribution on $S_{\theta} = \{(x,y) : \theta \le x^2 + y^2 \le \theta + 1\}$ where $\theta > 1$ is an unknown parameter. Which of the following statements are corrects?
 - (a.) $\max_{i < j < n} (x_i^2 + y_i^2) 1$ is a maximum likelihood estimate of θ
 - (b.) $\min_{1 \le i \le n} (x_i^2 + y_i^2)$ is maximum likelihood estimate of θ
 - (c.) Any value between $\max_{1 \le i \le n} (x_i^2 + y_i^2) 1$ and $\min_{1 \le i \le n} (x_i^2 + y_i^2)$ is a maximum likelihood estimate of θ
 - $\text{(d.) Any value between } \max_{\scriptscriptstyle i \leq i \leq n} \left(x_i^2 \right) + \max_{\scriptscriptstyle i \leq i \leq n} \left(y_i^2 \right) 1 \text{ and } \min_{\scriptscriptstyle i \leq i \leq n} \left(x_i^2 \right) + \min_{\scriptscriptstyle i \leq i \leq n} \left(y_i^2 \right) \text{ is }$ maximum likelihood estimate of θ
- (117.) Let $\{N_t, t \ge 0\}$ be a Poisson process with intensity parameter 10. Let T be an exponential random variable with mean 6, and independent of the Poisson process. Which of the following are true?
 - (a.) $P(N_T = k) = e^{-10T} (10T)^k / k!$
 - (b.) $E(N_T) = 60$
 - (c.) $(N_{T+t} N_T; t \ge 0)$ is a Poisson process with intensity parameter 4
 - (d.) $(N_{T+t} N_T; t \ge 0)$ is a Poisson process with intensity parameter 10
- (118.) Consider the following Linear Programming Problem. Minimise 14x + 9y + 6z subject to

$$2x + y + z \ge 8$$

$$3x + 2y + z \ge 10$$
$$x \ge 0, y \ge 0, z \ge 0.$$

$$x \ge 0, y \ge 0, z \ge 0$$

What is the optimal value of the objective function?

- (a.) 52
- (b.) 48
- (c.) 50
- (d.) 56
- (119.) Consider a sequence of i.i.d. observations $X_1, X_2, ...$ from $N(0, \sigma^2)$. Which of the following are unbiased and consistent estimators of σ^2 ?

(a.)
$$\sqrt{\frac{1}{2}} \frac{1}{n} \sum_{i=1}^{n} |X_i|$$

(b.)
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left|X_{i}^{2}\right|}$$

- (c.) $\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2}$
- (d.) $\sqrt{\frac{1}{2\pi}(X_1^2 + X_\pi^2)}$
- (120.) Let X be a non-negative random variable with E[X] = 1. Which of the following quantities is necessarily greater than or equal to 1?
 - (a.) $E[X^4]$
 - (b.) $(E[\cos X])^2 + (E[\sin X])^2$
 - (c.) $E\left[\sqrt{X}\right]$
 - (d.) E[1/X]

